Meny
 

Hybrid Energy Systems for Offshore Applications

; Valerio Cozzani ; Anna Crivellari

There has been a strong need to enhance the utilization of renewable energy systems (RESs) from onshore to offshore applications where oil and gas companies are pivoting to integrate such renewable energy options into their offshore operations to lower their carbon footprint, extend the lifetime of their assets, and expand their market. Les mer
Vår pris
1769,-

(Paperback) Fri frakt!
Leveringstid: Sendes innen 7 virkedager

Paperback
Legg i
Paperback
Legg i
Vår pris: 1769,-

(Paperback) Fri frakt!
Leveringstid: Sendes innen 7 virkedager

Om boka

There has been a strong need to enhance the utilization of renewable energy systems (RESs) from onshore to offshore applications where oil and gas companies are pivoting to integrate such renewable energy options into their offshore operations to lower their carbon footprint, extend the lifetime of their assets, and expand their market. In this regard, innovative hybrid energy systems, such as "Power to Gas" (P2G) and "Power to Liquid" (P2L) options, as well as novel integration strategies for "Gas to Power" (G2P) systems, offer the opportunity to implement solutions energy transition, paving the way to offshore RES deployment.

Hybrid Energy Systems for Offshore Applications delivers a comprehensive presentation of state of the art and perspective developments of offshore RES exploitation strategies and technologies, and provides a unique portfolio of decision-making methodologies supporting the selection of the most suitable options for offshore renewable energy production at a specific site. System modeling and analysis along with the definitions of multicriteria methodologies and strategies based on sustainability, environmental impact, and safety performance indicators are addressed in an integrated fashion. Rounding out with both research and practical applications explained, this book gives academicians and industrial professionals fundamentals and methods for integrated performance analysis of innovative systems addressing offshore RES exploitation, sustainable chemical and power production, better efficiency, lower costs, lower environmental impact, and higher inherent safety.

Fakta

Innholdsfortegnelse

1. Introduction 2. Offshore Renewable Energy Options 3. Innovative Hybrid Energy Options 4. System Modelling and Analysis 5. Sustainability Index Development 6. Case studies 7. Conclusions and Future Directions

Om forfatteren

Ibrahim Dincer is a full professor of Mechanical Engineering at Ontario Tech University (formerly University of Ontario Institute of Technology). Renowned for his pioneering works in sustainable energy technologies he has authored/co-authored numerous books and book chapters, and many refereed journal and conference papers. He has chaired many national and international conferences, symposia, workshops, and technical meetings. He has delivered many keynotes and invited lectures. He is an active member of various international scientific organizations and societies, and serves as Editor-in-Chief, associate editor, regional editor, and editorial board member on various prestigious international journals. He is a recipient of several research, teaching and service awards, including the Premier's research excellence award in Ontario, Canada. During the past six years he has been recognized by Thomson Reuters as one of The Most Influential Scientific Minds in Engineering and one of the most highly cited researchers. Valerio Cozzani (1968) received his Ph.D. in Chemical Engineering from the University of Pisa (Italy) in 1996. During the Ph.D. he spent an year at the Industrial Hazard Unit (IPSC) of the Ispra European Community Joint Research Centre. After the Ph.D. he joined the National Research Group on Chemical and Environmental Risk of the Italian National Council of Research. Formerly lecturer at the University of Pisa, he is now professor at the Department of Civil, Chemical, Environmental and Materials Engineering of Bologna University, where he leads the Laboratory on Industrial Safety and Environmental Sustainability. He is Director of the academic graduate and undergraduate programs in Chemical Engineering an lectures on unit operations, design, loss prevention and risk assessment. He coordinated several joint university-industry training projects. His main research experience is in the field of safety of chemical processes and of environmental and energy technologies. The specific subjects afforded in his research activity are, among others, the development of innovative methodologies and models for hazard and risk analysis, the development of models for equipment damage and the implementation of procedures for the quantitative assessment of accidental scenarios triggered by external hazard factors. He has a wide experience in leading national and international research projects funded either by public organizations or by private companies. He coordinates the Italian working party on safety in the chemical and process industry (CISAP) and is Member of the Working Party of Loss Prevention (EFCE). He received the Trevor Kletz Merit Award 2015 for outstanding contributions to the field of Process Safety. He serves as Associate Editor of Safety Science and is a member of the Editorial Boards of the Journal of Hazardous Materials and of the Journal of Loss Prevention in the Process Industry. Anna Crivellari earned a PhD in Chemical and Process Engineering at the University of Bologna (Italy) working on the development of sustainability and inherent safety methodologies for early design of chemical processes and power systems at the Department of Civil, Chemical, Environmental and Materials Engineering of the Bologna University. She was a visiting researcher at the Clean Energy Research laboratory (CERL) of the Ontario Tech University. She currently works as a process safety engineer for a global energy company.