Meny
 

Interpretable Machine Learning with Python

Learn to build interpretable high-performance models with hands-on real-world examples

This hands-on book will help you make your machine learning models fairer, safer, and more reliable and in turn improve business outcomes. Every chapter introduces a new mission where you learn how to apply interpretation methods to realistic use cases with methods that work for any model type as well as methods specific for deep neural networks. Les mer
Vår pris
641,-

(Paperback) Fri frakt!
Leveringstid: Sendes innen 21 dager

Paperback
Legg i
Paperback
Legg i
Vår pris: 641,-

(Paperback) Fri frakt!
Leveringstid: Sendes innen 21 dager

Om boka

This hands-on book will help you make your machine learning models fairer, safer, and more reliable and in turn improve business outcomes. Every chapter introduces a new mission where you learn how to apply interpretation methods to realistic use cases with methods that work for any model type as well as methods specific for deep neural networks.

Fakta

Innholdsfortegnelse

Table of Contents

Interpretation, Interpretability and Explainability; and why does it all matter?
Key Concepts of Interpretability
Interpretation Challenges
Fundamentals of Feature Importance and Impact
Global Model-Agnostic Interpretation Methods
Local Model-Agnostic Interpretation Methods
Anchor and Counterfactual Explanations
Visualizing Convolutional Neural Networks
Interpretation Methods for Multivariate Forecasting and Sensitivity Analysis
Feature Selection and Engineering for Interpretability
Bias Mitigation and Causal Inference Methods
Monotonic Constraints and Model Tuning for Interpretability
Adversarial Robustness
What's Next for Machine Learning Interpretability?

Om forfatteren

Serg Masís has been at the confluence of the internet, application development, and analytics for the last two decades. Currently, he's a Climate and Agronomic Data Scientist at Syngenta, a leading agribusiness company with a mission to improve global food security. Before that role, he co-founded a startup, incubated by Harvard Innovation Labs, that combined the power of cloud computing and machine learning with principles in decision-making science to expose users to new places and events. Whether it pertains to leisure activities, plant diseases, or customer lifetime value, Serg is passionate about providing the often-missing link between data and decision-making — and machine learning interpretation helps bridge this gap more robustly.